

OPTracer 2.0

OPTracer 2.0

Guida d'uso rapida

Dicembre 2021 Edizione – rev.01.00

All rights reserved. The content of this document is confidential. Any form of transmission is prohibited. Any reproduction of the content of this document, either in whole or in part, is expressly prohibited without the prior consent of FAI Instruments S.r.I.

Revisione	Data	Autore
01.00	10-12-2021	Roberto Ferrera

Sommario

1 Descrizione generale del sistema OPTracer 4	ŀ
2 Descrizione interfacce 4	Ļ
2.1 Led Multicolore	,
2.2 Interfaccia seriale via USB6	;
2.2.1 Comandi Strumento6	;
2.3 Interfaccia Bluethooth	,
2.4 Chiavetta USB	,
2.5 Interfaccia wifi	,
3 Avvio del campionamento)
4 Chiusura del campionamento)
Appendice A – Warning	-

1 Descrizione generale del sistema OPTracer

L'OPTracer è un conta particelle ottico per la misura della concentrazione del materiale particellare in aria e la classificazione granulometrica in ambiente outdoor. Lo strumento fornisce inoltre la stima della concentrazione in massa delle frazioni PM10 e PM 2.5 del materiale aerodisperso.

Lo strumento consente il controllo ed il monitoraggio attraverso la connettività WiFi, BlueTooth e USB.

2 Descrizione interfacce

L'OPTracer può essere controllato tramite comandi su interfaccia bluethooth o collegamento seriale su USB, inoltre i dati possono essere trasferiti anche tramite chiavetta USB e ftp su wifi.

Lo strumento è dotato di un led multicolore per l'indicazione dello stato operativo.

2.1 Led Multicolore

Lo stato dello strumento può essere conosciuto visivamente tramite il led RGB,

L'interpretazione dello stato è descritto nella tabella qui di seguito:

Colore	Stato	Descrizione
Bianco	Init	All'avvio o dopo un reset lo
		strumento inizializza le
		periferiche e ne verifica il
		corretto funzionamento
Verde	Ready	Strumento regolarmente acceso
Verde lampeggiante (lento)	Waiting for start	In attesa dell'orario di
		campionamento programmato
Verde lampeggiante (veloce)	Sampling	Strumento in misura
Arancio	Warning	Sono presenti warning che non
		pregiudicano la possibilità di
		campionare ma devono essere
		valutati dall'utente
Rosso	Allarme	Lo strumento ha un
		malfunzionamento grave e non
		può campionare

Il led diventa bianco fisso nel momento in cui una chiavetta USB viene inserita, poi nella fase in cui i dati vengono trascritti il led inizia lampeggiare, alla fine della scrittura il led torna bianco fisso.

2.2 Interfaccia seriale via USB

Collegando un pc con connettore micro USB si può comunicare con lo strumento tramite un emulatore di terminale (Hyperterminal, TeraTerm, Real Term, etc..).

La configurazione della porta seriale è 115000,8,N,1, No Flow Control

2.2.1 Comandi Strumento

Comando	Significato	Note
W,D,ggmmaa,hhmm	Impostazione data ed ora	
R,D	Lettura data ed ora	
W,N, <device name=""></device>	Imposta nome strumento	
R,N	Legge nome strumento	
R,S	Lettura dello stato operativo	
W,O,S, <sampling time=""></sampling>	Imposta il tempo di campionamento	<sampling time=""> da 10 a 99999s</sampling>
R,O,S	Lettura tempo di campionamento	
R,T	Lettura temperature ambientale [°K]	
R,P	Lettura pressione ambientale [kPa]	
R,R	Lettura RH ambientale [%]	
R,Q	Lettura Warning	Vedi tabella interpretazione warning appendice B
W,G,0,[1 0]	Attiva (1) o disattiva (0) autostart	
R,G,0	Lettura impostazione autostart	
Comando	Significato	Note

C,S	Start Sampling	Primo commando imposta
		campionamento allineato al
		primo orario disponibile rispetto
		al tempo di campionamento
		impostato, al secondo commando
		avvio immediate
C,T	Pause/Stop Sampling	Primo commando pausa sampling
		Secondo commando stop
		sampling
B B	Scarico dati ultimo	Vengono scaricati i dati in meoria
1,0		
	campionamento	dall'ultimo avvio

2.3 Interfaccia Bluethooth

L'OPTracer ha un'interfaccia Bluethooth LE (Low Energy), può essere utilizzata come interfaccia seriale.

Si può collegare lo strumento tramite app da dispositivo mobile. Le impostazioni di terminale prevedono i caratteri <CR> a <LF> come terminatori di riga.

Il protocollo implementato è lo stesso disponibile su porta seriale a parte la possibilità di scaricare i dati.

Per il protocolla fare riferimento alla tabella del paragrafo 2.2.1

2.4 Chiavetta USB

Inserendo una chiavetta USB lo strumento effettuerà lo scarico completo dei dati di tutti i campionamenti in memoria.

Quando la chiavetta usb viene inserita nell'apposito connettore il led diventa di colore bianco fisso; durante il trasferimento dei files il led sarà sempre bianco, ma lampeggiante; una volta finita la scrittura il led tornerà bianco fisso.

Lo scarico dei dati può essere effettuato in qualunque stato dello strumento.

2.5 Interfaccia wifi

L'OPTracer crea una rete wifi denominata opcnet<sn strumento>

Si può accedere alla rete tramite la password 12345678

A questo punto si può avviare un qualunque client ftp (es. FileZilla da PC o app mobileSFTP per android) con i seguenti dati:

user:pi

password:optberry

una volta collegato, si accede alla cartella OPT/OPTxxxx dove è possibile selezionare i file da trasferire

3 Avvio del campionamento

Lo strumento può essere impostato per avviare il campionamento automaticamente all'accensione oppure per essere avviato manualmente tramite comando.

Utilizzare il comando W,G,0,1 per impostare auto start abilitato

Con il comando R,G,O si può verificare che sia abilitato (risposta R,G,O,1) oppure disabilitato (risposta R,G,O,0)

Con l'autostart abilitato lo strumento si avvia automaticamente quando viene acceso. Se viene chiuso il campionamento tramite comando C,T (ripetuto due volte) lo strumento può essere avviato di nuovo spegnendo e riaccendendo oppure tramite comando C,S.

Se si imposta auto start disabilitato tramite comando W,G,0,0 lo strumento deve essere avviato manualmente tramite C,S

4 Chiusura del campionamento

Il campionamento deve essere chiuso tramite comando C,T. In questo modo lo strumento potrà distinguere le serie di dati divise in campagne di campionamento.

5 Formato dati

I dati vengono salvati in file nel formato csv con il carattere virgola come separatore dei campi

Quando vengono trasferiti tramite ftp o chiavetta si ritroverà un file al giorno con la data come nome del file in una cartella denominata con la data e l'ora di inzio campionamento.

Quando i dati vengono trasferiti tramite collegamento seriale verrà trasferito solo l'ultimo campionamento in caratteri ascii con lo stesso formato dei file di testo (caratteri separati da virgola).

Per l'interpretazione dei dati fare riferimento alla tabella nell'appendice A

Appendice A – Descrizione campi record

Field N	Name	Note
1	Record Number	
2	Date and time	
3	Instrument Name	
4	Mode	Differential/Cumulative
5	Sample Seconds	
6	Average Flow Rate	
7	Temp	
8	Press	
9	RH	
10	Channel 1	
11	Channel 2	
39	Channel 30	
40	PM 2.5	
41	PM 10	
42	Validation	
43	Warning	24 bit word

Appendice B – Warning

BIT	Significato	Note
0	Laser module 11comm Failure	Non Comunica con modulo laser:
		strumento va in allarme e ferma il
		campionamento.
1	Temperature sensor failure	Temperatura > 333 °K oppure <
		233 °K
		Oppure errore su I2C
2	Pressure sensor failure	Pressione Atmosferica > 110kPa
		oppure < 60 kPa
		Oppure errore su I2C
3	RH sensor failure	RH errore su I2C
4	OPTracer Internal RTCC error	Errore su RTC
5	Modem error	Non Implementato
6	SD Memory error	Errore scrittura in memoria (dati
		su SD)
7	BLE Init error	Mancata inizializzazione Bluetooth
8	0x0001 Laser error	Da qui in poi sono quelli del record Particle Plus
9	0x0002 PhotoAmp error	
10	0x0004 Flow error	
11	0x0008 Invalid config options	
12	0x0010 Invalid calibration	
13	0x0020 Invalid Fpga image	
14	0x0040 FPGA init error	
15	0x0080 RTCC error	
16	0x0100 Memory error	
17	0x0200 System error	